
Going Serverless With Spring’s Support
for GraalVM, Project CraC & More

Java Developer Conference 2024

Timo Salm, Senior Lead Tanzu DevX Solution Engineer
Broadcom

About me

Timo Salm

Senior Lead Tanzu DevX Solution Engineer – EMEA

https://tanzu.vmware.com

§ X (Twitter): @salmto
§ LinkedIn: https://linkedin.com/in/timosalm
§ GitHub: https://github.com/timosalm

https://tanzu.vmware.com/
https://linkedin.com/in/timosalm
https://github.com/timosalm

Agenda

§ What is Serverless?
§ Going Serverless with your Spring Boot applications
§ GraalVM Native Images
§ JVM Checkpoint Restore with Project CraC
§ Class Data Sharing (CDS)

§ Summary

What is Serverless?

What Is Serverless?

Serverless doesn’t mean there are no servers it means you don’t care
about them.

Serverless can be grouped into two areas:
§ Backend as a Service (BaaS): Replacing server-side, self-managed components with off-the-

shelf services
§ Functions as a Service (FaaS): A new way of building and deploying server-side software

oriented around deploying individual functions

The key is that with both, you don't have to manage your own server
hosts or server processes and can focus on business value!

Shorter lead time

Reduced packaging and
deployment complexity

Increased flexibility of
scaling

Reduced labor and
resource costs

Reduced risk

Why Serverless?

Drawbacks / Limitations of Serverless
§ Unpredictable costs
§ Spinning up machines takes time - from a few seconds to minutes
§ Most Serverless applications are stateless, management of the state can be tricky
§ Vendor lock-in unless you are using OSS projects like e.g. Knative
§ Loss of control over

§ absolute configuration
§ the performance of Serverless components
§ issue resolution
§ security

§ Higher latency due to inter-component communication over HTTP APIs and “cold starts”
§ And more …

Going Serverless
with your Spring Boot applications

Demo
Running a Spring Boot application on a Serverless runtime

Faster startup time Lower resource
consumption

(memory, CPU)

More cost savings

Unleash the Full Potential of Serverless for Our Application

Option 1
GraalVM Native Images

What Are Native Images?
§ Standalone executable of ahead-of-time compiled Java code
§ Includes the application classes, classes from its dependencies, runtime library classes, and

statically linked native code from JDK
§ Runs without the need for a JVM, necessary components are included in a runtime system

called “Substrate VM”
§ Specific to the OS and machine architecture for which it was compiled
§ Requires fewer resources than regular Java applications running on a JVM
§ GraalVM is an advanced JDK with support for ahead-of-time Native Image compilation

.java
Java Class

JIT @ Compile Time

Compiler .class
Bytecode

JIT @ JVM Runtime

JIT
Compiler

Native
Code

.java
Java Class

AOT @ Compile Time

Compiler .class
Bytecode

AOT @ Native Runtime

.jar
Archive Executed

Native
Executable Executed.jar

Archive

Demo
Building and running our Spring Boot application as native image

Developer Productivity

Compilation takes much longer
and consumes more resources

Dynamic Java features may
require special ”treatment”

Additional metadata required for
reflection, proxies, resources, …

“Closed World” Assumptions
to retain static analysis benefits

Classpath and bean conditions
are fixed at build time, and

manipulation of bytecode and
Java agents is not supported

GraalVM Native Image Tradeoffs

Providing Custom Hints With Spring Boot 3
Custom hints can be registered programmatically by implementing the RuntimeHintsRegistrar interface. Activate
those hints with @ImportRuntimeHints on any Spring bean or @Bean factory method.

Hints are automatically inferred for classes that need binding (e.g., for JSON serialization). But if you use
WebClient or RestTemplate directly, you might need to use @RegisterReflectionForBinding.

JAVA

public class MyRuntimeHints implements RuntimeHintsRegistrar {
@Override
public void registerHints (RuntimeHints hints, ClassLoader classLoader) {

// Register method for reflection
Method method = ReflectionUtils.findMethod(MyClass.class, "sayHello", String.class);
hints.reflection().registerMethod(method, ExecutableMode. INVOKE) ;
// Register resources
hints.resources().registerPattern("my-resource.txt");
// Register serialization
hints.serialization().registerType(MySerializableClass.class);
// Register proxy
hints.proxies().registerJdkProxy(MyInterface.class);

} }

Option 2
JVM Checkpoint Restore with Project CraC

Running Java processSnapshot to disk

What is Project CRaC?
§ Coordinated Restore at Checkpoint (CRaC) is an OpenJDK project
§ Provides a Java API to take a snapshot of a Java process (checkpoint) when it is fully warmed

up and restore it on any number of HotSpot JVMs
§ The restored process retains all the capabilities of the HotSpot JVM, including further JIT

optimizations at runtime
§ Not all existing Java programs can run without modification, as all resources need to be

explicitly closed before you can create a checkpoint, and these resources must be reinitialized
after the restore.

Running Java process

Checkpoint
Close all resources and
stop application context

Restore
Restart application context and

reinitialize all resources

Demo
Taking a snapshot of our running Spring Boot application and restoring it

Checkpoint requires
fully warmed-up Java

process

Additional lifecycle
management

Requires graceful
stopping and starting
of resources and pools

Snapshot files may
contain secrets and
other sensitive data

Linux specific and
requires some Linux

capabilities

Project CRaC Tradeoffs

Option 3
Class Data Sharing (CDS)

What is Class Data Sharing?
§ Class Data Sharing (CDS) is a JVM feature that reduces memory footprint and improves startup

time
§ Mature and production-ready technology that continuously improves with future

enhancements through Project Leyden
§ Initial CDS support introduced in Spring Framework 6.1
§ Less restrictive than GraalVM and Project CRaC

Demo
Creating the CDS archive of our running Spring Boot application and using it

Improvement is not as dramatic
as with GraalVM or Project CRaC

Spring Boot executable JARs
and unpacked deployments do

not allow optimal CDS
performances yet

JDK and classpath used for
archive creation and starting the
application should be identical

Class Data Sharing Tradeoffs

Summary

Summary
Faster startup times and lower memory overhead reduce costs.

GraalVM Native Images
§ Provide the most improvements in startup time and memory consumption
§ Option with the most constraints, like significantly longer build times, additional metadata that

has to be provided for dynamic language features, and no support for Spring Profiles

JVM Checkpoint Restore with Project CraC
§ Similar improvements in startup time but not in memory consumption
§ The solution also has several constraints. One of the most tricky ones is where to create the

snapshot (build- or runtime) and how to provide it

Class Data Sharing (CDS)
§ The improvements with Class Data Sharing (CDS) are not as dramatic as with the other options,

and therefore, probably not a solution for scale to zero, but with hardly any constraints

Thank you

Timo Salm
X (Twitter): @salmto

LinkedIn: https://linkedin.com/in/timosalm

GitHub: https://github.com/timosalm

